this post was submitted on 26 Dec 2024
59 points (100.0% liked)

Ask Science

8770 readers
452 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 2 years ago
MODERATORS
top 22 comments
sorted by: hot top controversial new old
[–] T0Keh16@feddit.org 7 points 5 hours ago* (last edited 5 hours ago)

This depends on what properties you want your number system to satisfy. Usually you want for any three numbers a,b,c to satisfy

  1. Associativity of addition: a+(b+c)=(a+b)+c This is quite useful, so we don't want to give this up

  2. Commutativity of addition: a+b=b+a Also useful but you could get around that if you really want to, but for our purposes let's keep it

  3. An additive identity (or zero): 0+a=a=a+0 You want a zero, so this is needed

  4. Additive inverses: There exists x such that a+x=0 (here x=-a); you also want this

  5. Associativity of multiplication: a*(bc)=(ab)*c Same as above, you want this property

  6. Commutativity of multiplication: Useful but not necessary

  7. A multiplicative identity (or one): 1a=a=a1 Usually with 1=/=0, also useful

  8. Multplicative inverses for nonzero elements: Not that necessary, there are useful number systems without this (like the integers ...,-1,0,1,...)

  9. Distributivity: a(b+c)=ab+ac, (a+b)c=ac+bc You ant this, as it links addition and multiplication and this is quite desirable.

If you assume 4. and 9., you get 0a = (0+0)a=0a+0a, hence 0=0a. This means that you would have to give up distributivity wihin your number system, however distributivity is what links addition and multiplication together, hence your question would just be "what if we have two binary operations that don't really interact with each other?" and the answer is: Maybe there are useful cases?

Edit: I forgot about losing property 4, in which case some examples are found in the following math stackexchange post

[–] gandalf_der_12te@discuss.tchncs.de 10 points 18 hours ago* (last edited 18 hours ago)

There's a think called Dirac Delta, which, simplified, has the property that δ • 0 = 1. It's used in physics to deal with singularities (where values would be ∞) in a meaningful way.

[–] Moobythegoldensock@lemm.ee 6 points 17 hours ago

“Imaginary numbers” aren’t actually imaginary. They got that name back when people didn’t realize they actually exist. The reality is that they are actual numbers and do actual numbers things.

Division by 0 is mathematically undefined. There is no definable number that you can use to do number things expressed by 1/0.

[–] pixelscript@lemm.ee 65 points 1 day ago* (last edited 1 day ago) (3 children)

This is a question I see from time to time, and it's a good question to ask.

Your question as I understand it can be phrased another way as:

The square root of -1 has no defined answer. So we put a mask on it and pretend that's the answer. We do math with the masked number and suddenly everything is fine now. Why can't we do the same thing to division by zero?

The difference is that, if you try to put a funny mask on the square root of -1 and treat it like a number, nothing breaks, but if you try the same thing with a division by zero, all sorts of things break.

If you define i = √-1, that is the only thing i can ever be. That specific quantity. You can factor it out of stuff, raise it to that exponent, whatever. And if it is ever convenient to do so, you can always unmask it back into that thing, e.g. i^2 = (√-1)^2 = -1. All the while, all the already existing rules of math stay true.

A division by zero isn't like this, because if you tried it, every number divided by zero would equal to the same thing. If we give it a name, say, 1 / 0 = z, then it would also be true that 2 / 0 = z. We could then solve both sides for zero:

1 / z = 0

2 / z = 0

then set them equal:

1 / z = 2 / z

then multiply both sides by z:

1 = 2

which is a contradiction.

i doesn't have this problem.

[–] niktemadur@lemmy.world 2 points 4 hours ago

Oh man, I knew I had asked this question in the right place.
Thank you!

With imaginary numbers, I visualize something like a needle popping up and moving through cartesian space in new directions or dimensions in all sorts of unexpected and intricate ways, and eventually they find utterly extraordinary and elegant things like the Mandelbrot set. So I wondered if there are other "hacks" or "cheats" that open up new types of progressions and behaviors for study.

Someone else in the thread also mentioned Dirac doing something along the lines of (a)(0) ≠ 0 to handle some of the infinities that pop up in physics.

[–] phcorcoran@lemmy.world 7 points 16 hours ago* (last edited 16 hours ago) (1 children)

I'm curious, couldn't we define z as only 1/0? Then 2/0 would have to be factored to 2*(1/0) first and it would solve this specific example of things breaking. I haven't done advanced math in a while but your comment picked my curiosity haha

I remember 1/0 is pretty important in limits and stuff, it just seemed to me that this specific example seems not too hard to resolve

[–] pixelscript@lemm.ee 1 points 3 hours ago* (last edited 3 hours ago)

I'm fuzzy on the deeper details. I think you can do something like this, but you have to be very careful, in ways where you don't have to be so careful with ✓-1.

One of the more obvious ways to consider: plot a graph of y = 1 / x. Note how as x approaches zero from the right, the graph shoots up, asymptotically approaching the y-axis and shooting up to infinity. It's very tempting to say that 1 / 0 is "infinity". "Infinity" is not a real number, but nothing is stopping you from defining a new kind of number to represent this singularity if you want to. But at that point you have left the real numbers. Which is fine, right? Complex numbers aren't real numbers either, after all...

But look at the left side of the graph. You have the same behavior, but the graph shoots down, not up. It suggests that the limit of approaching from the left is "negative infinity". Quite literally the furthest possible imaginable thing from the "infinity" we had to define for the right side. But this is supposed to be the same value, at x = 0. Just by approaching it from different directions, we don't just get two different answers, we get perhaps the most different answers possible.

I think it's not hard to intuit a handwavey answer that this simply represents the curve of y = 1 / x "wrapping around through infinity" or some notion like that. Sure, perhaps that is what's going on. But dancing around a singularity like that mathematically isn't simple. The very nature of mathematical singularities is to give you nonsensical results. Generally, having them at all tends to be a sign that you have the wrong model for something.

You can mostly avoid this problem by snipping off the entire left half of the x-axis. Shrink your input domain to only non-negative numbers. Then, I believe, you can just slap "infinity" on it and run with it and be mostly fine. But that's a condition you have to be upfront about. This becomes a special case solution, not a generalized one.

I haven't looked into it, but I believe this singularity gets even more unweildy if you try to extend it to complex numbers. All the while, complex numbers "just work". You don't need doctor's gloves to handle them. √-1 isn't a mathematical singularity, it's a thing with an answer, the answer just isn't a real number.

[–] JamesTBagg@lemmy.world 5 points 23 hours ago

This is the first time I've seen this spelled out and it makes perfect sense.

[–] itsAsin@lemmy.world 3 points 16 hours ago (1 children)

the following image is the Mathematical Abstract for the book Quantum Theoretic Machines by August Stern

i honestly have no idea what any of it means, but i read the book (it's fascinating) and remembered that the square root of zero is defined in his theory.

interesting, no?

[–] T0Keh16@feddit.org 2 points 6 hours ago

To be completely honest, this looks like what I like to refer to as "symbol vomit". And also, the square root of 0 is just 0, that is the definition you will find almost everywhere, so there is no need for this weird symbol salad. As for the author, I couldn't find him apart from like two of his books, do you have any more infos on him? Because this looks very non-mathematical apart from the symols.

[–] bstix@feddit.dk 11 points 23 hours ago (1 children)
[–] LovableSidekick@lemmy.world 4 points 22 hours ago

Interestingly 0^0^ doesn't always mean 1, sometimes it's treated as undefined - depends on what type of mathematical problem you're working on.

[–] homura1650@lemmy.world 9 points 22 hours ago

You get this property in algrabraic structures called "wheels". The simplest to understand wheel is probably the wheel of fractions, which is a slightly different way of defining fractions that allows division by 0.

The effect of this is to create 2 additional numbers: ∞ = z/0 for z != 0, ⊥, and ⊥ = 0/0.

Just add infinity gives you the real projective line (or Riemen Sphere if you are working with comples numbers). In this structure, 0 * ∞ is undefined, so is not quite what you want

⊥ (bottom) in a wheel can be thought as filling in for all remaining undefined results. In particular, any operation involving ⊥ results in ⊥. This includes the identity: 0 * ⊥ = ⊥.

As far as useful applications go, there are not many. The only time I've ever seen wheels come up when getting my math degree was just a mistake in defining fractions.

In computer science however, you do see something along these lines. The most common example is floating point numbers. These numbers often include ∞, -∞ and NaN, where NaN is essentially just ⊥. In particular, 0 * NaN = NaN, also 0 * ∞ = ⊥. The main benefit here is that arithmetic operations are always defined.

I've also seen an arbitrary precision fraction library that actually implemented something similar to the wheel of fractions described above (albeit with a distinction between positive and negative infinity). This would also give you 0 * ∞ = ⊥ and 0 * ⊥ = ⊥. Again, by adding ⊥ as a proper value, you could simplify the handling of some computations that might fail.

[–] Impronoucabl@lemmy.world 24 points 1 day ago (1 children)

One of the defining properties of 0 is that anything multiplied by it results in 0.

So in your operation, without being given the actual result, I'd say no, the question is ill-defined.

[–] Hamartiogonic@sopuli.xyz 4 points 1 day ago* (last edited 1 day ago) (1 children)

Then maybe there could be a different kind of zero that works normally with normal numbers, but when multiplied by some bizarre number gives a non-zero answer. Maybe after a few centuries we’ll be using bizarre numbers for computing weird stuff we can’t even imagine yet.

At the moment, that’s a solution looking for a problem, but give is time.

[–] Blue_Morpho@lemmy.world 4 points 1 day ago

That sounds like you are describing a function.

You can have a function where inputting 0 gives a 0 output except certain conditions where an input of 0 gives non zero output. For example y=sin(x) gives 0 every time x=2π. Otherwise it ouputs a non zero number.

[–] BearOfaTime@lemm.ee 13 points 1 day ago* (last edited 1 day ago)

The unit imaginary number, i, equals the square root of minus 1. Imaginary Numbers are not "imaginary", they really exist and have many uses.

https://www.mathsisfun.com/numbers/imaginary-numbers.html

[–] Zachariah@lemmy.world 8 points 1 day ago (1 children)

Imagine that you have zero cookies and you split them evenly among zero friends. How many cookies does each person get? See? It doesn't make sense. And Cookie Monster is sad that there are no cookies, and you are sad that you have no friends.

[–] SacralPlexus@lemmy.world 2 points 21 hours ago

I feel attacked.

[–] DemBoSain@midwest.social 2 points 22 hours ago

Imaginary is an incorrect term. There's nothing imaginary about i, it's a logical mathematical construct. I hate that imaginary is used in this context.

[–] haroldstork@lemm.ee 1 points 22 hours ago

One of the biggest misconceptions of imaginary numbers is that "i = √-1" Well... it does equal that, but the bigger truth is that "i^2 = -1". We don't care what the actual value of i is, we're imagining a number who's square is -1 and all the awesome math that comes from that is the complex numbers.

[–] eran_morad@lemmy.world -1 points 23 hours ago

Such a number leads to mathematical paradox, it’s beyond useless.