this post was submitted on 17 May 2024
9 points (90.9% liked)

Asklemmy

43473 readers
1155 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 5 years ago
MODERATORS
all 22 comments
sorted by: hot top controversial new old
[โ€“] charonn0@startrek.website 3 points 4 months ago* (last edited 4 months ago) (1 children)

All participants select their own random whole number and publish it to the group. All participants add all the numbers together. The result is either odd or even (heads/tails) and everyone arrives at the same result independently.

[โ€“] driving_crooner@lemmy.eco.br 4 points 4 months ago (1 children)

The last person to send the number decide the outcome

[โ€“] charonn0@startrek.website 1 points 4 months ago (2 children)

It doesn't have to be addition. It could be a hash function, etc.

[โ€“] AndrasKrigare@beehaw.org 4 points 4 months ago (1 children)

The last person would still decide the outcome. They could keep choosing values for whatever function until it produces their desired result and then post that.

What you would want instead is for everyone to post a (salted) hash, and after the hashes are posted, reveal what the original numbers were and then publicly add them. Everyone could verify everyone else's numbers against those hashes.

[โ€“] mub@lemmy.ml 1 points 4 months ago

Could you do it in 2 phases? First, everyone selects a random partner and exchanges their random number. Each pair then has a result that is locked in. Then everyone submits their result to be summed up as already suggested (Pos/neg = heads/tails).

If there are an uneven number of players, then one player makes a three-some.

[โ€“] fishpen0@lemmy.world 2 points 4 months ago

If the function is known by all parties then the last person to send still has control

[โ€“] HappyRedditRefugee@lemm.ee 2 points 4 months ago (2 children)
  1. Decide on a random N and what tails (even) and heads (uneven) mean.

  2. Each party generates a random number

  3. Combine the numbers with a conmutative operation of some sort, the harder the operation the better.

  4. Take the hash N times. (Can be done independently by each participant)

(4.5) optional: for extra robustness, do some hard-to-calculate transformations to the result of 4. (Can be done independently by each party)

  1. The final result is either uneven or even === coin toss. (0 will be treathed as even*.*)

This is not infalibe, one party could get all the numbers a precalculate a answer to get a specific result but they will need to randomly try numbers. adding some timing constrains, using big numbers and hard operations would make that sort of attack not really practicable.

Nice question, had fun thinking about it!

[โ€“] sbv@sh.itjust.works 1 points 4 months ago (2 children)

How does the group reach consensus on N?

[โ€“] xmunk@sh.itjust.works 2 points 4 months ago (1 children)

Polling, probably - if the majority of group members are bad actors you're fucked.

[โ€“] TexMexBazooka@lemm.ee 1 points 4 months ago

Are we talking about American politics again?

[โ€“] HappyRedditRefugee@lemm.ee 1 points 4 months ago

Not very important, even if generated by a single actor N has not such a big importance. If I were implementing something like this I'd just probably make it -hardcoded-.

If you reaaaallyyyy want to decide on a N on the fly, I'd put a restricction (a<Nx<b) make each participant generate a Nx and then sum then all, -multiply'em If you wanna be hardcore- But I'd be tricky to get it right, for example a party might be able to consistently make N whatever the max value of N is by making their Nx very big -Which, well, I don't really know how it would benefit that party and how would they exploit it-. Maybe using a operation like a XOR on the Nx would be robust enough, and would mitigate the kind of attack that I described above

Tl;dr: you can just have a random party generate it.

[โ€“] 56_@lemmy.ml 1 points 4 months ago (1 children)

Step 3 is where the issue occurs. The last party to submit their value has control over the output. Any complex calculations can easily be passed off as network lag. One solution I can think of is to pass the values round in a circle, one by one. This would require each party to share their value before they have seen all other values. At the end each party would share their calculated values to verify they match. Probably other solutions as well.

[โ€“] vzq@lemmy.blahaj.zone 1 points 4 months ago* (last edited 4 months ago) (2 children)

Most remote coin tossing schemes incorporate commitment systems for this reason.

https://en.wikipedia.org/wiki/Commitment_scheme

[โ€“] HappyRedditRefugee@lemm.ee 1 points 4 months ago

Amazing solution, didn't arrive to that one, I was thinking just making a timing constraint to reveal the number that would make the precaculation practically imposible, but the commitment schmeme is waaaay more elegant.

[โ€“] 56_@lemmy.ml 1 points 4 months ago

Yes, that makes a lot more sense.

[โ€“] Tolookah@discuss.tchncs.de 1 points 4 months ago

Everyone throws a number at the same time, the result is the checksum/sum of the throws. Server throws first publicly, keeps the device Numbers secret until the last throw. It's not perfect, but it'll do.

[โ€“] Revan343@lemmy.ca 1 points 4 months ago* (last edited 4 months ago) (1 children)

Coin flipping

Suppose Alice and Bob want to resolve some dispute via coin flipping. If they are physically in the same place, a typical procedure might be:

Alice "calls" the coin flip,
Bob flips the coin,
If Alice's call is correct, she wins, otherwise Bob wins.

If Alice and Bob are not in the same place a problem arises. Once Alice has "called" the coin flip, Bob can stipulate the flip "results" to be whatever is most desirable for him. Similarly, if Alice doesn't announce her "call" to Bob, after Bob flips the coin and announces the result, Alice can report that she called whatever result is most desirable for her. Alice and Bob can use commitments in a procedure that will allow both to trust the outcome:

Alice "calls" the coin flip but only tells Bob a commitment to her call,
Bob flips the coin and reports the result,
Alice reveals what she committed to,
Bob verifies that Alice's call matches her commitment,
If Alice's revelation matches the coin result Bob reported, Alice wins.
For Bob to be able to skew the results to his favor, he must be able to understand the call hidden in Alice's commitment. If the commitment scheme is a good one, Bob cannot skew the results. Similarly, Alice cannot affect the result if she cannot change the value she commits to.

[โ€“] red_pigeon@lemm.ee -1 points 4 months ago

Or they can just talk to each other and resolve the dispute

[โ€“] tetris11@lemmy.ml 0 points 4 months ago* (last edited 4 months ago) (2 children)
  1. Everyone tosses three coins, and posts it in the chat
    • If a player tosses three of the same, they have to toss again.
  2. Everyone chooses the mode coin from their neighbour, and adds it to their stack
  3. Each player, with 3+N coins, picks the mode coin in their own collection.
    • Ideally: the player's own bias, is outweighed by the other player's biases.
  4. The final coin is the mode of all players coins.

spoiler

from numpy import median
from pprint import pprint

players = {"p1" : [1,0,1],  ## playing fair
           "p2" : [0,0,1],  ## cheating
           "p3" : [1,1,0],  ## cheating
           "p4" : [1,1,0],  ## cheating
           "p5" : [0,0,1]}   ## playing fair
print("Initial rolls:")
pprint(players)

get_mode_coin = lambda x: int(median(x))
get_all_mode_coins = lambda x: [get_mode_coin(y) for y in x]

for play in players: ## Players add the mode coin from their neigbours
    players[play] = players[play] + get_all_mode_coins(players.values())
print("First picks:")
pprint(players)

for play in players: ## Players collapse their collections to mode
    players[play] = [get_mode_coin(players[play])]
print("Last modes:", players)

print("Final choice:", get_mode_coin([x for x in players.values()]))

Which as you can see, is no better than simply picking the median coin from the initial rolls. I thank you for wasting your time.

[โ€“] smileyhead@discuss.tchncs.de 2 points 4 months ago

The last player (or server) still can choose a result, because it knows other tosses before making it's own.

[โ€“] Dkarma@lemmy.world 2 points 4 months ago

First person gets a box showing heads tails. Once that is picked player 2 is shown a flip coin button. This isn't fucking hard except the sync between apps which you do via db on the back end.