this post was submitted on 13 Jan 2025
56 points (100.0% liked)

Ask Science

8827 readers
87 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] niktemadur@lemmy.world 11 points 6 days ago* (last edited 6 days ago)

I'm going to copy-paste the exact relevant bit here:

For each neutrino, there also exists a corresponding antiparticle, called an antineutrino, which also has no electric charge and half-integer spin. They are distinguished from the neutrinos by having opposite signs of lepton number and chirality. As of 2016, no evidence has been found for any other difference.

I knew about the chirality difference, that there are no right-handed neutrinos nor left-handed antineutrinos (or something along those lines, breaking what was thought to be a fundamental parity or symmetry), but what puzzled me was that I thought the charge difference was the one big fundamental difference between matter and antimatter, and suddenly tonight the neutrino question popped into my head. At the very least I knew that it's not a mass/negative mass type of difference.

Now as for that bit that says "opposite signs of lepton number"... I'd never even heard of this concept or characteristic, until right now.