this post was submitted on 28 Nov 2024
78 points (100.0% liked)
Asklemmy
44279 readers
374 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
congrats on the excellent project.
how many pieces of the piezo and which frequency of operation did you use?
how did you design/source the acoustic lens design?
seriously well done!!
Thank you! :)
I managed to get 4 piezo elements to work, limited by the FPGA. This was actually enough for some reasonable horizontal resolution since I used a phase array configuration, so the downside was the electronics had to generate very precisely timed pulses. The fourth prototype had 10 working elements thanks to replacing the MCU-FPGA duo with just a more powerful FPGA and using conductive glue to more reliably connect the elements themselves.
It was configurable to use any even divisor of 120 MHz, but in practice anything over 1 MHz would not even make it out of the acoustic lens due to the low voltage and low quality impedance matching layer. And much lower frequencies are barely useful anyways, so the true working range was narrow.
For the acoustic lens, I used the parametric design software OpenSCAD, with an equation for aberration-free lenses I had found somewhere and saved long before (will find it if you want) and the speed of sound in the different materials.