116
this post was submitted on 08 Jul 2024
116 points (99.2% liked)
Asklemmy
44362 readers
53 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's only marginally more detailed on the chemistry, but conventional semiconductors (inorganic) are roughly like metal. Silicon is literally a shiny, meltable element, although it's more brittle than a true metal. Like metal, unless they react with something like in rusting, they're probably going to stay the same kind of metal. There's exceptions if you really abuse a piece of metal, but a laymen probably hasn't thought much about tempering and differences in crystal structure
Organic semiconducters are organic compounds, like a dye. Just as a dye can bleach or change over time, they can chemically change with a lot less outside help. This makes them prone to not working the same way after prolonged use. Blue and violet are the most energetic colours, so it makes sense the components emitting it would break down first. UV OLEDs would be even worse.
The reason we don't use arrays of inorganic LEDs as screens (yet) is that they're really picking hard and exacting to grow. The standard way to do it is grow a wafer which is about screen size, and then cut it up into tiny sections, only some of which will work, and each of which is worth something significant on it's own. OLED can be grown in less crazy conditions, more like just printing with ink, and Micro LED gets around the wafer problem by using a precise robot arm to handle, test and connect each sub-pixel individually.
Cool video i saw a few days ago about the challenges of making true microLED displays. These would become the unchallenged king of displays if it became economical to make them and wouldnt have any of these issues.
https://www.youtube.com/watch?v=8_2KcB8JkfE