Ardubal

joined 2 years ago
[–] Ardubal@mastodon.xyz 1 points 1 year ago (6 children)

@MattMastodon @Sodis

I'll try to explain the 40%, sorry for the parts that you already know.

Electric energy is always produced at the same time (and »place« roughly) as it is consumed. (You can't pump electricity into some reservoir to be consumed later, you always need a different energy form for storage.)

The problem with volatile sources is that they mostly (more than half) produce energy at the wrong time and/or the wrong place, and at other times produce nothing.

[–] Ardubal@mastodon.xyz 0 points 1 year ago (10 children)

@MattMastodon @Sodis We're going in circles. Volatile sources can only supply 40% of current demand for £50/MWh. The question is what fills the rest.

If storage, then the price goes up immediately by at least two conversion losses from/to storage, in addition to the cost of storage itself. Which doesn't exist at the needed scalability.

Pointing to single projects is not meaningful, as we need to build a fleet anyway, which has its own dynamics.

[–] Ardubal@mastodon.xyz 0 points 1 year ago (12 children)

@MattMastodon @Sodis If you include construction and disposal (and transport and so on…) it is called lifecycle costs. First image shows that per energy produced (sorry german, »AKW neu« is new-built nuclear).

Uranium comes from all over the world. Second image shows the situation a few years ago. Niger is place 5, Russia place 7.

[–] Ardubal@mastodon.xyz 1 points 1 year ago (15 children)

@MattMastodon @Sodis Again: that demand is lower at night is already factored in. Roughly 40% of demand can be directly met by volatile sources. You may think nuclear is slow to deploy, but it's still much faster than anything that doesn't exist.

The gap is 60%. Gas is a fossil fuel. Varying use is mostly a euphemism. If you hurt industry, you won't have the industry to build clean energy sources.

[–] Ardubal@mastodon.xyz 1 points 1 year ago (17 children)

@MattMastodon @Sodis Careful about labels. »Renewables« often includes biomass (which is just fast-track fossil tbh) and hydro (which is not so volatile). I'm talking about wind and solar specifically (volatiles).

40% is roughly the mean capacity factor of a good mix of volatiles. This is what you can directly feed to the user from the windmill/panel, without storage. You can expand a bit by massive overbuilding, but you can't overbuild your way out of no wind at night.

[–] Ardubal@mastodon.xyz 1 points 1 year ago (1 children)

@Sodis @MattMastodon Nuclear power plants can quite easily do load following. It happens regularly e. g. in France. However, since it has the lowest running costs, other sources are usually cut first as far as possible.

[–] Ardubal@mastodon.xyz 0 points 1 year ago (19 children)

@MattMastodon @Sodis Only about 40% of demand can be directly met from volatiles (wind and solar), i. e. no intermediate storage. The rest has to come from »backup« or »storage« or however you call it.

Current storage tech is still almost 100% pumped hydro. Batteries have not made a real dent there yet. But pumped hydro is not enough by far, even potentially, and batteries have a long way to go to be even as scalable as pumped hydro.

So, backup. The only clean, scalable backup is nuclear.

view more: ‹ prev next ›