3DPrinting
3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.
The r/functionalprint community is now located at: !functionalprint@kbin.social or !functionalprint@fedia.io
There are CAD communities available at: !cad@lemmy.world or !freecad@lemmy.ml
Rules
-
No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia. Code of Conduct.
-
Be respectful, especially when disagreeing. Everyone should feel welcome here.
-
No porn (NSFW prints are acceptable but must be marked NSFW)
-
No Ads / Spamming / Guerrilla Marketing
-
Do not create links to reddit
-
If you see an issue please flag it
-
No guns
-
No injury gore posts
If you need an easy way to host pictures, https://catbox.moe/ may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)
Moderation policy: Light, mostly invisible
view the rest of the comments
The only things you can rely on with regard to how the lenses are edged is:
The bevel will be "bevelly" - meaning it'll be a bevel of some kind, between 90 and 120 degrees, but no flatter than that. In other words, you can rely on having something to grip the lens with and that's enough.
The bevel follows the curvature of the frame. If you frame is flat, the bevel will be placed all around the edge of the lens flat too.
As much as your correction will allow, the bevel will be placed as far forward as possible so the lens looks like it's tangent with the front of the frame all around, and all the thickness will be hidden at the back of the frame. So if your frame is, say, 2mm in width, the root of the bevel will be placed 1mm from the front of the edge.
The other thing you can rely on is that the bevel will be slightly oversized so they can be snapped into the frame, and the amount of oversize will be a bit higher for plastic frames which are more flexible. And that's where the danger lies: if your frames are designed to hold the frame without pressure like mine, you have to tell the optician so they pass the information to the lens cutter. Otherwise you will received lenses that are slightly too big.
But don't sweat it too much: the great thing with 3D printing is, even if the lenses you received aren't the right size, you can always print another frame with slightly revised dimensions.
And if you really don't want to print another frame, don't forget that you pay beaucoup bucks for those damn bits of plastic, so you can always copiously warn the optician that your frames are not made of the kinds of plastics plastic frames are usually made of, and then the onus will be on the lens maker to make the lenses right for your frames (remember that they will be sent your frames, so they'll know rightaway if the lenses fit).
If the lenses aren't right, it's their problem and you can reject the lenses and tell them to try again. If you warn the optician in no uncertain terms that your frames are PLA, they or the lens maker can't claim they didn't know.
Just design the frames you want with the shape you want, with a 120-degree bevel, and ask your optician if it's workable for the lens maker. They might tell you they'll ask them - and you can leave them a test print too if they want to sent it to the lens maker too. There isn't much more to this really.
Be aware that cable temples are a lot more finicky to adjust than regular curved temples. If they're too short, even a little, they'll dig into the skin behind your ears and you'll hate them. Likewise, if the hook is too narrow, the tip will hurt you under your ear.
That's a big reason why cable temples went out of favor in the 1920's: they're great when they're well adjusted, but they quickly become nasty and uncomfortable when they aren't - unlike maladjusted curved temples which can simply ride up the ear a little without too much drama.
With regular metal wire, you can bend the temples this and that way to make them fit. Not so much with PLA. You can shape it with heat but if you do it more than once, it becomes rough and unpleasant to wear - if the PLA doesn't delaminate completely. So take the time to design the right length and shape directly in your model. It's a bit long and tedious but once you know the right dimensions, you'll love how natural they feel.
Also, don't make the wire too thin or it will dig into your skin as well. And too thick will make the wire inflexible and difficult to put on. The wire profile that works best for me is this (for PLA):