this post was submitted on 20 Jun 2023
107 points (100.0% liked)

Science

13009 readers
8 users here now

Studies, research findings, and interesting tidbits from the ever-expanding scientific world.

Subcommunities on Beehaw:


Be sure to also check out these other Fediverse science communities:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] hikaru755@feddit.de 2 points 1 year ago (1 children)

Can you expand on what "invert its spatial coordinates" means? From your example it seems you're just flipping around the origin of your coordinate system, but since there is no fixed, "natural" reference frame that would provide a "true" origin, isn't that origin completely arbitrary and the math should then work out with any origin you use? I feel like I'm missing something here

[โ€“] krzyz@szmer.info 6 points 1 year ago

Not OP, but: it works similarly to looking at the system in a mirror. The clock's hands turn, well, clockwise, but if you look at the mirror their movement is anticlockwise. Importantly, if you look at that mirror in another mirror, it will be clockwise again. Add yet another mirror and it's anticlockwise.

With a single mirror at position x=0 (and YZ plane), you invert "x" position, so (1, 1, 1) becomes (-1, 1, 1). "Inverting" the spatial coordinates ((x,y,z) -> (-x, -y, -z)) is effectively the same as looking at system through 3 mirrors, located at x = 0 (YZ plane), y = 0 (XZ plane) and z = 0 (XY plane), but that is a bit hard to visualize/arrange in practice so usually you would think of it as an equivalent operation of a point reflection around (0, 0, 0). You are right that the point is arbitrary: the important thing is, among others, that clockwise movement becomes anticlockwise.