this post was submitted on 28 Sep 2023
18 points (100.0% liked)

Ask Science

8645 readers
2 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

I understand how lucky imaging gets the results it gets, but I'm wondering specifically how the 10% of frames are chosen.

They're not picked based on clarity/blur, because the problem is one of distorted images not blurry images, causing issues when averaging the stack.

Searching online gives me lots of answers about how lucky imaging produces clearer images, but not how the lucky frames are chosen.

Anyone know how lucky frames get chosen?

you are viewing a single comment's thread
view the rest of the comments
[–] PeriodicallyPedantic@lemmy.ca 2 points 1 year ago (1 children)

Thanks, I'll take a look at that! I think I actually already skimmed it, because those 5 points are familiar.

I wasn't sure what was meant by the PSF guide star. Is that just the function that selects the speckle in each frame use to shift/align the frames?

Also I wasn't sure what "sync-resampled" means. Shifted-and-upscaled?

Reading this had given me an idea on how I might implement it myself, but I wasn't familiar enough with the terminology to know if my algorithm was the same as the one described.

I'll try reading further into the paper to see if it clears anything up

I believe the idea is that a single bright star in the frame (the guide star) is used for selecting the frames. The point spread function (PSF) is just going to be some function that describes the blurred shape you would observe with the detector for an input point source. You then select frames in which the guide star is well centered, compared to its overall distribution.

I think your guess on “sync-resampled” is correct. They increased the “resolution” by a factor of 4, so that when they realign the chosen frames to center the guide star, they can do so at a sub-pixel precision.

You may want to check out chapter 3 in the thesis, particularly section 3.5.3. The give a lot more detail on the process than you’ll be able to find in the paper. A well-written PhD thesis can be 1000x more valuable than the journal article it ultimately produces, because it contains all the specific details that can be glossed over in the final paper.