this post was submitted on 07 Aug 2023
85 points (97.8% liked)
Europe
8484 readers
1 users here now
News/Interesting Stories/Beautiful Pictures from Europe πͺπΊ
(Current banner: Thunder mountain, Germany, π©πͺ ) Feel free to post submissions for banner pictures
Rules
(This list is obviously incomplete, but it will get expanded when necessary)
- Be nice to each other (e.g. No direct insults against each other);
- No racism, antisemitism, dehumanisation of minorities or glorification of National Socialism allowed;
- No posts linking to mis-information funded by foreign states or billionaires.
Also check out !yurop@lemm.ee
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
@MattMastodon @AlexisFR @Wirrvogel
The optimum imho is:
The bulk of the generation from wind and solar, and nuclear for 15% - 20% base load. Also some Geothermal where cheap but it's potential is small.
Grids improved to cover local and intermediate renewable generation, and extended to facilitate import/export.
Variable electricity pricing for demand shifting.
The result is vastly reduced need for storage, probably batteries used intelligently in a hierarchy of grid and home, compared to the naΓ―ve "just build wind and solar and batteries."
Then add in:
This all needs no new technology (although for nuclear there are several advances not yet used at scale: molten salt, small, modular, U238, thorium), it needs a fraction of the rare earths, and delivers a huge in reduction steel production courtesy of car recycling.
#Energy #Renewables #ClimateCrisis #Climate #Nuclear
[P.S. Dams damage eco-systems so I'm not in favour of more hydro generation, and pumped hydro storage needs the spare water too.
Biomass not "net zero" and obviously not "zero" which we actually need. It's just more carbon burning plus extra pollution from the agriculture and other products of combustion. It increases land use, and at present the industry is full of corruption with trees being burned sometimes alongside shredded car tyres... and subsidised!]
@MattMastodon @AlexisFR @Wirrvogel @Ardubal @Sodis
Tesla marketing heaven.
#FGPT
@Pampa @AlexisFR @Wirrvogel @Ardubal @Sodis
So
One #nuclear power station will buy about a million #electric cars. Most #EVs have a 300km range but most days go <30km.
So the mean available #energy capacity of all these cars would run the #UK for 24 hours using #V2G (Vehicle to grid)
This could be a massive #car share scheme with a couple of EVs on every street
Or #electricbuses
All the energy could come from #wind or #solar and the #battery fills the gaps when there is no wind
#climate
@MattMastodon @Pampa @AlexisFR @Wirrvogel @Sodis
A few points to factor in:
- A nuclear power station has a much longer lifetime than batteries, solar panels, and wind turbines.
- You need not only the batteries, but also the panels/turbines to fill them.
- Conversion and storage losses are significant. Attached is a rough overview for Hβ.
- Transmission infrastructure costs to/from individual cars are significant.
- 24 h is not enough by far to balance out usual fluctuations.
@Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
Thanks for this. You have raised many interesting points and are obviously very knowledgeable.
I think #H2 may also be a read herring also. At the moment the cost of green hydrogen is so much higher than blue hydrogen, the cynic in me is wondering if this is just an excuse to rebrand fossil fuels
If my calculations about battery tech are correct we will have lots of #batteries very soon.
More than we would need for a few days
Very soon
@MattMastodon @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
Batteries are great for short term storage (Hours to Days), but the further you are from the equator, the more you need seasonal storage.
Hydrogen possibly fits part of that, if it is produced by electrolysis when wind / solar are in surplus.
Problems are:
how to store it, it leaks through most storage containers, requires vast amounts of energy to liquify and
The round trip from Electricity via H2 to Electricity is very inefficient.
@MattMastodon @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
A thought,
I wouldn't completely write methane, LPG , or any other petrochemical, off yet, as a seasonal storage medium.
They are a lot easier to store and transport than H2.
They can be produced from green H2 + captured CO2
https://en.wikipedia.org/wiki/Methanation
We have a lot of existing infrastructure which can use them.
That is of course If we can produce enough surplus Solar / Wind to make them.
https://www.power-technology.com/features/eth-zurich-fuel-air-and-sunlight/
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis There seems to be a lot of uncertainty around the cost of green hydrogen. The first three Google links differ wildly on it.
Natural gas has certainly increased the cost of grey hydrogen lately.
If the problem is the cost of electricity, that's easily solved by producing mainly when there's a surplus of green electricity. However, if the cost is the capital outlay, that's harder. Which is it?
Of course, we can and must require by law that all new capacity be green. Current incentives also include blue, but there is more green hydrogen actually being built.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis The problem with using it for long term electricity storage is leaks, of course. It's a weak greenhouse gas.
https://www.theguardian.com/environment/2022/jun/17/pollutionwatch-hydrogen-power-climate-leaks
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis IIRC most studies show that long term storage is only a few percent of total energy, certainly well under 10%. So it is a viable option - if you can get past leaks, and other problems (e.g. the temptation to burn it, producing NOx pollution). And can store vast amounts of energy relatively cheaply.
Nuclear is of course a viable option. There are a few others e.g. iron-air batteries, or just building a lot more renewables than we need. Lithium is only helpful for short to medium term storage.
Re synthetic fuels, so far extremely expensive and limited scale. Might possibly be used for aviation in the long run (but it's easier just to fly less, and we still need a reliable, safe solution to the contrails problem). Maybe shipping too (possibly as ammonia).
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Here's a study from a while back about how much storage is actually needed, using the example of Australia. You can get to ~98% with relatively little storage. For the remaining 2%, you need to think about more difficult options - demand side measures, nuclear, long term storage, etc.
https://reneweconomy.com.au/a-near-100-per-cent-renewables-grid-is-well-within-reach-and-with-little-storage/
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis There is commercial production of green hydrogen today, but it requires a subsidy. The cost of grey hydrogen does not reflect the damage it causes.
That's exactly what it is. Hydrogen power plants are just trojan horses for methane. Since they can burn one as well as the other, but CH4 is much more economically convenient.