this post was submitted on 01 Aug 2023
1465 points (97.9% liked)
Technology
59693 readers
5283 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The footprint of solar is significant, but still nothing compared to agriculture. E.g. The area used to grow corn to make ethanol in the US is ~ 3x what you'd need to fully power the US on solar.
~96000000 acres used for corn, ~40% of that is used for ethanol. That makes 38.3e6 acres. First estimate I found for area of solar panels to fully power the US on solar alone was 14.08e6. That makes corn for ethanol 2.7 times the area of solar panels if all that was used was solar.
Yeah agriculture isn't great for the environment either, but that doesn't actually make solar any better
But what I'm saying is that the land used by solar isn't all that significant, and it's also costed into the price of solar farms. To power the US purely off solar would require significantly less land than is currently used for ethanol production alone. I'd say the environmental good of solar (cheap, renewable power) significantly outweighs the cost of it.
For the transition off fossil fuels to happen quickly it needs to be economic, and solar is a big part of making it economic. Nuclear is just too expensive
I guess it depends on perspective. On one hand, it's an enormous amount of land - on the other hand, the USA is extremely big. I personally think the footprint is significant. It's not like we'd tear down suberbs to make solar farms, we'd tear down nature (undeveloped land).
The cost being the motivator that makes solar better than nuclear I don't believe to be accurate. Short term, solar is cheaper, but also we're making panels as fast as we can. It takes a lot of materials and is hard to scale quickly, so we can't just decide we want to switch the USA to solar and think we'll have enough panels in a decade even.
Additionally, nuclear isn't expensive in the long run. It's quite profitable and low maintenance. Nuclear waste is blown up by people who don't understand it. And our grid is ready to be powered by nuclear. Our grid can't yet handle the quick variablility of solar. If that weren't a problem, we still need additional power from events where there isn't a lot of sun for a while. Batteries may get us through the night someday (also another enormous manufacturing feat) but they won't get us through the week.
If both can be profitable, it's really a question of what we want to build. I argue that we can't even run off solar yet without some new technologies being made. Nuclear is the quick fix we need. The only reason we don't have it already is because of attitude towards it ("not in my backyard"), which I think would be different if people understood it.
The lifetime cost of of nuclear (build, running + clean-up) divided by the amount of electricity created is incredibly high. This report from csiro doesn't include large scale nuclear but does include projected costs for small modular reactors +solar and wind. Generally large reactors come out behind smr especially in future projections.
https://www.csiro.au/en/research/technology-space/energy/energy-data-modelling/gencost
Note the "wind and solar pv combined" "variable with integration costs" which is the cost accounting for storage, transmission etc. It's not that high (at least up to the 90% of the grid modelled for 2030). The best end of the nuclear estimate is double the cost of that. The reasons that the storage costs etc. Are not as high as you may intuitively expect are explained in that report.
Maybe there is a place for nuclear in that last 10%, but not in less than that. Also as far as rolling it out quickly, look at how long this last nuclear plant took to build from planning to construction being complete.
I think that it is possible to manage the cleanup of nuclear and to make it safe, but it's all just very expensive. To make everyone happy with the transition off fossil fuels it needs to be cost competitive and renewables are, nuclear isn't.