this post was submitted on 14 Nov 2024
30 points (94.1% liked)

Ask Science

8645 readers
2 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] count_of_monte_carlo@lemmy.world 10 points 1 day ago (1 children)

I’ll echo the other replies that the gravitational waves from black hole mergers have been detected by LIGO. In fact, the 2017 Nobel Prize in physics was awarded to members of this collaboration specifically for this feat.

We haven’t (yet) seen a pair of black holes collide using light directly, but the gravitational waves have been perfectly consistent with general relativity calculations. Here’s a video from LIGO that shows what one of these simulations looks like, for a simulation that reproduces a detected gravitational wave.

As an aside, right around the time the LIGO team was awarded the Nobel prize, they detected the collision of a pair of neutron stars. They alerted the astronomy community to the direction they saw the signal from, and within a day there were telescope observations of light from the kilonova that resulted from the collision. Ultimately various sensors recorded optical light, infrared, ultraviolet, gamma rays, and radio waves being emitted from the explosion. The hope is that someday we’ll get lucky enough to see similar photon signatures from a black hole merger!

[–] Yokozuna@lemmy.world 3 points 1 day ago

The LIGO video is beautiful and terrifying all at the same time.